A PERT chart is a project management tool used to schedule, organize, and coordinate tasks within a project. PERT stands for Program Evaluation Review Technique, a methodology developed by the U.S. Navy in the 1950s to manage the Polaris submarine missile program. A similar methodology, the Critical Path Method (CPM), which was developed for project management in the private sector at about the same time, has become synonymous with PERT, so that the technique is known by any variation on the names: PERT, CPM, or PERT/CPM.
A PERT chart presents a graphic illustration of a project as a network diagram consisting of numbered nodes (either circles or rectangles) representing events, or milestones in the project linked by labeled vectors (directional lines) representing tasks in the project. The direction of the arrows on the lines indicates the sequence of tasks. In Figure 3.1 the tasks between nodes 1, 2, 4, 8, and 10 must be completed in sequence. These are called dependent or serial tasks. The tasks between nodes 1 and 2 and nodes 1 and 3 are not dependent on the completion of one to start the other and can be undertaken simultaneously. These tasks are called parallel or concurrent tasks. Tasks that must be completed in sequence but that don't require resources or completion time are considered to have event dependency. These are represented by dotted lines with arrows and are called dummy activities. For example, the dashed arrow linking nodes 6 and 9 indicates that the system files must be converted before the user test can take place, but that the resources and time required to prepare for the user test (writing the user manual and user training) are on another path. Numbers on the opposite sides of the vectors indicate the time allotted for the task.
The PERT chart is sometimes preferred over the Gantt chart, another popular project management charting method, because it clearly illustrates task dependencies. On the other hand, the PERT chart can be much more difficult to interpret, especially on complex projects. Frequently, project managers use both techniques.
The PERT chart is sometimes preferred over the Gantt chart, another popular project management charting method, because it clearly illustrates task dependencies. On the other hand, the PERT chart can be much more difficult to interpret, especially on complex projects. Frequently, project managers use both techniques.
Critical Path Method (CPM)
Critical Path Method (CPM) charts are similar to PERT charts and are sometimes known as PERT/CPM. In a CPM chart, the critical path is indicated. A critical path consists of that set of dependent tasks (each dependent on the preceding one) which together take the longest time to complete. Although it is not normally done, a CPM chart can define multiple, equally critical paths. Tasks which fall on the critical path should be noted in some way, so that they may be given special attention. One way is to draw critical path tasks with a double line instead of a single line.
Tasks which fall on the critical path should receive special attention by both the project manager and the personnel assigned to them. The critical path for any given method may shift as the project progresses; this can happen when tasks are completed either behind or ahead of schedule, causing other tasks which may still be on schedule to fall on the new critical path.
Tasks which fall on the critical path should receive special attention by both the project manager and the personnel assigned to them. The critical path for any given method may shift as the project progresses; this can happen when tasks are completed either behind or ahead of schedule, causing other tasks which may still be on schedule to fall on the new critical path.
Simulation of a Network
The normal PERT procedure which bases the estimates of Te and ST on a single critical path can grossly overstate the probabilities of completing a project by a given date, especially if there are one or more parallel paths through the network which are nearly critical, and/or which have relatively large variances. By use of Monte Carlo sampling technique, activity times are randomly selected for each activity from some appropriate frequency distribution. The project length and critical path data are then calculated in the normal way, based on these times. This procedure is repeated several thousand times and finally an average project length and standard deviation are calculated on the basis of simulated data. In the simulation procedure no single path is identified as the critical, but the probability of each activity's being on a critical path is estimated. Thus, this procedure helps the planner in identifying the critical activities which may not lie on the same path.
1 comment:
Developed Knol Online Handbook of Industrial Engineering Look forward to your comments.
Post a Comment